Détails de produit
Lieu d'origine: La Chine
Nom de marque: ENNENG
Certification: CE,UL
Numéro de modèle: PMM
Conditions de paiement et d'expédition
Quantité de commande min: 1 ensemble
Prix: USD 500-5000/set
Détails d'emballage: emballage navigable
Délai de livraison: 15-120 jours
Conditions de paiement: L/C, T/T
Capacité d'approvisionnement: 20000 ensembles/année
Nom: |
Moteur à un aimant permanent de conversion de fréquence |
Actuel: |
C.A. |
Matériel: |
Terre rare NdFeB |
Chaîne de puissance: |
5.5-3000kw |
Polonais: |
2,4,6,8,10 |
Tension: |
380v, 660v, 1140v, 3300v, 6kv, 10kv |
Couleur: |
Bleu |
Type: |
IPMSM |
Logement: |
Fonte |
Fréquence: |
50HZ |
Nom: |
Moteur à un aimant permanent de conversion de fréquence |
Actuel: |
C.A. |
Matériel: |
Terre rare NdFeB |
Chaîne de puissance: |
5.5-3000kw |
Polonais: |
2,4,6,8,10 |
Tension: |
380v, 660v, 1140v, 3300v, 6kv, 10kv |
Couleur: |
Bleu |
Type: |
IPMSM |
Logement: |
Fonte |
Fréquence: |
50HZ |
Moteur à un aimant permanent exempt d'entretien d'entraînement direct de conversion de fréquence
Quel est le moteur synchrone à un aimant permanent ?
Le moteur synchrone à un aimant permanent (PMSM) est un moteur synchrone à C.A. dont l'excitation de champ est fournie par des aimants permanents et a une forme d'onde arrière sinusoïdale d'EMF. Le PMSM est une croix entre un moteur à induction et un moteur sans brosse de C.C. Comme un moteur sans brosse de C.C, il a un rotor à un aimant permanent et des enroulements sur le redresseur. Cependant, la structure de redresseur avec des enroulements construits pour produire une densité de flux sinusoïdale dans l'entrefer de la machine ressemble que d'un moteur à induction. Sa densité de puissance est plus haute que des moteurs à induction avec les mêmes estimations puisqu'il n'y a aucune puissance de redresseur consacrée à la production de champ magnétique.
Avec des aimants permanents le PMSM peut produire du couple à la vitesse nulle, il exige un inverseur à commande numérique pour des opérations. PMSMs sont typiquement employés pour les commandes performantes et à haute efficacité de moteur. Le contrôle de moteur performant est caractérisé par rotation sans heurt de la gamme de vitesse entière du moteur, le plein contrôle de couple à la vitesse nulle, et l'accélération et la décélération rapides.
Pour réaliser un tel contrôle, des techniques de contrôle de vecteur sont employées pour PMSM. Les techniques de contrôle de vecteur habituellement désigné également sous le nom du contrôle orienté champ (FOC). L'idée fondamentale de l'algorithme de contrôle de vecteur est de décomposer un redresseur actuel dans une partie champ-produisante magnétique et une cloison couple-produisante. Les deux composants peuvent être commandés séparément après décomposition.
Travail du moteur synchrone à un aimant permanent
Le principe de fonctionnement à un aimant permanent de moteur synchrone est semblable au moteur synchrone. Il dépend du champ magnétique de rotation qui produit de la force électromotrice à la vitesse synchrone. Quand l'enroulement de redresseur active en donnant l'approvisionnement triphasé, un champ magnétique de rotation est créé entre les entrefers.
Ceci produit le couple quand les poteaux de gisement de rotor tiennent le champ magnétique de rotation à la vitesse synchrone et le rotor tourne sans interruption. Car ces moteurs auto-ne commencent pas des moteurs, il est nécessaire de fournir une alimentation d'énergie variable de fréquence.
Analyse du principe des avantages techniques du moteur à un aimant permanent
Le principe d'un moteur synchrone à un aimant permanent est comme suit : Dans l'enroulement du redresseur du moteur dans le courant triphasé, après passage-dans le courant, il formera un champ magnétique de rotation pour l'enroulement du redresseur du moteur. Puisque le rotor est installé avec l'aimant permanent, le pôle magnétique de l'aimant permanent est fixé, selon le principe des pôles magnétiques de la même phase attirant la répulsion différente, la rotation le champ que magnétique produit dans le redresseur conduira le rotor pour tourner, la vitesse de rotation du rotor est égal à la vitesse du poteau tournant a produit dans le redresseur.
forme d'onde De retour-emf :
De retour l'emf est abréviation la force de retour électromotrice mais est également connu comme force compteur-électromotrice. La force électromotrice de dos est la tension qui se produit dans des moteurs électriques quand il y a un mouvement relatif entre les enroulements de redresseur et le champ magnétique du rotor. Les propriétés géométriques du rotor détermineront la forme de la forme d'onde de retour-emf. Ces formes d'onde peuvent être sinusoïdales, trapézoïdales, triangulaires, ou quelque chose dans l'intervalle.
L'induction et les machines de P.M. produisent des formes d'onde de retour-emf. Dans une machine d'induction, la forme d'onde de retour-emf se délabrera comme le gisement résiduel de rotor se délabre lentement en raison du manque d'un gisement de redresseur. Cependant, avec une machine de P.M., le rotor produit de son propre champ magnétique. Par conséquent, une tension peut être induite dans les enroulements de redresseur toutes les fois que le rotor est dans le mouvement. la tension De retour-emf montera linéairement avec la vitesse et est un facteur crucial en déterminant la vitesse de fonctionnement maximum.
Les moteurs à un aimant permanent à C.A. (PMAC) ont un large éventail d'applications comprenant :
Outillage industriel : Des moteurs de PMAC sont utilisés dans un grand choix d'applications d'outillage industriel, telles que des pompes, des compresseurs, des fans, et des machines-outils. Ils offrent le rendement élevé, la densité de puissance élevée, et le contrôle précis, les rendant idéaux pour ces applications.
Robotique : Des moteurs de PMAC sont utilisés dans des applications de robotique et d'automation, où ils offrent la densité élevée de couple, le contrôle précis, et le rendement élevé. Ils sont employés souvent dans les bras robotiques, les pinces, et d'autres systèmes de contrôle de mouvement.
Systèmes de la CAHT : Des moteurs de PMAC sont utilisés dans le chauffage, la ventilation, et les systèmes de la climatisation (la CAHT), où ils offrent le rendement élevé, le contrôle précis, et les niveaux à faible bruit. Ils sont employés souvent dans les fans et des pompes dans ces systèmes.
Systèmes énergétiques renouvelables : Des moteurs de PMAC sont utilisés dans les systèmes énergétiques renouvelables, tels que des turbines de vent et des traqueurs solaires, où ils offrent le rendement élevé, la densité de puissance élevée, et le contrôle précis. Ils sont employés souvent dans les générateurs et les systèmes de piste dans ces systèmes.
Matériel médical : Des moteurs de PMAC sont utilisés dans le matériel médical, tel que des machines d'IRM, où ils offrent la densité élevée de couple, le contrôle précis, et les niveaux à faible bruit. Ils sont employés souvent dans les moteurs qui conduisent les pièces mobiles dans des ces machines.
Un moteur de P.M. peut être séparé dans deux catégories principales : moteurs à un aimant permanent extérieurs (SPM) et moteurs à un aimant permanent intérieurs (IPM). Ni l'un ni l'autre de type de conception de moteur ne contient des barres de rotor. Les deux types produisent du flux magnétique par les aimants permanents apposés à ou l'intérieur du rotor.
Les moteurs de SPM ont des aimants apposés à l'extérieur de la surface de rotor. En raison de ce support mécanique, leur force mécanique est plus faible que celle des moteurs d'IPM. La force mécanique affaiblie limite la vitesse mécanique sûre maximum du moteur. En outre, ces moteurs montrent le saliency magnétique très limité (≈ Lq de LD).
Les valeurs d'inductance ont mesuré sur les terminaux de rotor sont cohérentes indépendamment de la position de rotor. En raison du rapport proche de saliency d'unité, les conceptions de moteur de SPM se fondent de manière significative, sinon complètement, sur le composant magnétique de couple pour produire le couple.
Les moteurs d'IPM ont un aimant permanent incorporé dans le rotor lui-même. À la différence de leurs homologues de SPM, l'emplacement des aimants permanents rend des moteurs d'IPM très mécaniquement sains, et appropriés au fonctionnement à très grande vitesse. Ces moteurs également sont définis par leur rapport magnétique relativement élevé de saliency (Lq > LD). En raison de leur saliency magnétique, un moteur d'IPM a la capacité de produire du couple en tirant profit des composants magnétiques et de réticence de couple du moteur.
Avantages
Petit et léger
Dans électromagnétique spécial et la conception structurelle, le rapport de volume-à-poids est réduit de 20%, la longueur de la machine entière est réduite de 10%, et l'à toute vitesse des fentes de redresseur est grimpé jusqu'à 90%.
Fortement intégré
Le moteur et l'inverseur sont fortement intégrés, évitant la connexion externe de circuit entre le moteur et l'inverseur, et améliorant la fiabilité des produits de système.
De rendement optimum
Le matériel à un aimant permanent de terres rares performant, la fente spéciale de redresseur, et la structure de rotor rendent ce moteur efficace jusqu'au niveau IE4.
Concevez en fonction du client
La conception adaptée aux besoins du client et la fabrication, consacrées aux machines spéciales, réduisent des fonctions et des marges superflues de conception et réduire au minimum des coûts.
Bas vibration et bruit
Le moteur est directement conduit, le bruit et la vibration d'équipement sont petits, et l'impact sur l'environnement de travaux de construction est réduit.
Exempt d'entretien
Aucune pièces ultra-rapides de vitesse, aucun besoin de changer le lubrifiant de vitesse régulièrement, et équipement véritablement exempt d'entretien.
Auto-détection contre l'opération en circuit fermé
Les avances récentes en technologie d'entraînement permettent le C.A. standard conduit « auto-pour détecter » et pour dépister la position d'aimant de moteur. Un système en circuit fermé utilise typiquement le canal de z-impulsion pour optimiser la représentation. Par certaines routines, la commande connaît la position précise de l'aimant de moteur en dépistant les canaux d'A/B et la correction pour des erreurs avec le z-canal. Connaître la position précise de l'aimant tient compte de la production optima de couple ayant pour résultat l'efficacité optima.
Jaillissez l'affaiblissement/intensification des moteurs de P.M.
Le flux dans un moteur à un aimant permanent est produit par les aimants. Le champ de flux suit un certain chemin, qui peut être amplifié ou opposé. L'amplification ou l'intensification du champ de flux permettra au moteur d'augmenter temporairement la production de couple. L'opposition du champ de flux niera le gisement existant d'aimant du moteur. Le gisement réduit d'aimant limitera la production de couple, mais réduit la tension de retour-emf. La tension de retour-emf réduite libère la tension pour pousser le moteur pour fonctionner aux vitesses à haute production. Les deux types d'opération exigent le courant supplémentaire de moteur. La direction du moteur actuel à travers le d-axe, si par le contrôleur de moteur, détermine l'effet désiré.
Quelles applications utilisent des moteurs de PMSM ?
Les moteurs synchrones à un aimant permanent ont les avantages de la structure simple, de la petite taille, du rendement élevé, et du facteur de puissance élevée. Elle a été très utilisée dans l'industrie métallurgique (usine de fabrication de fer et usine d'agglomération, etc.), l'industrie en céramique (broyeur à boulets), l'industrie du caoutchouc (mélangeur interne), l'industrie d'industrie pétrolière (dispositif de pompage) et textile (doubles machine de torsion, cadre de rotation) et d'autres industries dans le moteur de tension moyenne et basse.
Pourquoi vous devriez choisir un IPM moteur au lieu d'un SPM ?
1. Le couple élevé est réalisé à l'aide du couple de réticence en plus du couple magnétique.
2. Les moteurs d'IPM consomment jusqu'à 30% moins de puissance comparée aux moteurs électriques conventionnels.
3. La sécurité mécanique est améliorée aussi, à la différence de dans un SPM, l'aimant ne détachera pas en raison de la force centrifuge.
4. Il peut répondre à la rotation ultra-rapide de moteur en commandant les deux types de couple utilisant le contrôle de vecteur.